Monomial realization of crystal bases for special linear Lie algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial Relization of Crystal Bases for Special Linear Lie Algebras

We give a new realization of crystal bases for finite dimensional irreducible modules over special linear Lie algebras using the monomials introduced by H. Nakajima. We also discuss the connection between this monomial realization and the tableau realization given by Kashiwara and Nakashima. Introduction The quantum groups, which are certain deformations of the universal enveloping algebras of ...

متن کامل

Monomial Realization of Crystals B(∞) and B(λ) for Special Linear Lie Algebras

Nakajima introduced a certain set of monomials characterizing the irreducible highest weight crystals. The monomial set can be extended so that it contains B(∞) in addition to B(λ). We give explicit new realizations of the crystals B(∞) and B(λ) over special linear Lie algebras.

متن کامل

Young Wall Realization of Crystal Bases for Classical Lie Algebras

In this paper, we give a new realization of crystal bases for finitedimensional irreducible modules over classical Lie algebras. The basis vectors are parameterized by certain Young walls lying between highest weight and lowest weight vectors.

متن کامل

Polyhedral Realization of Crystal Bases for Generalized Kac-moody Algebras

In this paper, we give polyhedral realization of the crystal B(∞) of U− q (g) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of rank 2, 3 and Monster Lie algebras. Introduction In his study of Conway and Norton’s Moonshine Conjecture [3] for the infinite dimensional Z-graded representation V ♮ of the Mons...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.08.001